Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems
نویسندگان
چکیده
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملGmres , L - Curves , and Discrete Ill - Posed Problems ∗
The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill...
متن کاملFGMRES for linear discrete ill-posed problems
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...
متن کاملFractional Tikhonov regularization for linear discrete ill- posed problems
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...
متن کاملFractional regularization matrices for linear discrete ill-posed problems
The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2019
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2019.02.010